
Microsoft Offi ce Access 2007

Appendix H

Database Design
Introduction
This appendix presents a method for designing a database to satisfy a set of requirements.
In designing a database, you must identify the tables in the database, the columns in the
tables, the primary keys of the tables, and the relationships between the tables.

The appendix begins by examining some important concepts concerning relational
databases and then presents the design method. To illustrate the process, the appendix
presents the requirements for the JSP Recruiters database. The appendix then applies
the design method to those requirements to produce the database design. The appendix
concludes by examining normalization, a process that you can use to identify and fi x
potential problems in database designs.

Relational Databases
A relational database is a collection of tables similar to the tables for JSP Recruiters that
appear in Figure H–1 on the next page. The Client table contains information about the
clients to which JSP Recruiters provides recruiting services. JSP assigns each client to a
specifi c recruiter. The Recruiter table contains information about the recruiters to whom
these clients are assigned.

The Seminar table lists the specifi c seminars that the recruiters at JSP Recruiters offer
to their clients. Each seminar has a number and a description. The table also includes the
number of hours for which the seminar usually is offered and the increments, that is, the
standard time blocks, in which the seminar usually is offered. The fi rst row, for example,
indicates that seminar S01 is Assessing Patient Satisfaction. The seminar typically is
offered in 2-hour increments for a total of 8 hours.

The Seminar Offerings table contains a client number, a seminar number, the total
number of hours for which the seminar is scheduled, and the number of hours the client
already has spent in the seminar. The second record shows that client BH72 currently has
scheduled seminar S03 (Medical Powers of Attorney). The seminar is scheduled for 12 hours,
of which 6 hours already have been spent.

The formal term for a table is relation. A relation essentially is a two-dimensional
table. If you study the tables shown in Figure H–1 on the next page, you might see that
there are certain restrictions you can place on relations. Each column in a table should
have a unique name, and entries in each column should match this column name. For
example, in the Postal Code column, all entries in fact should be postal codes. In addition,
each row should be unique. After all, if two rows in a table contain identical data, the
second row does not provide any information that you do not already have. In addition,
for maximum fl exibility, the order in which columns and rows appear in a table should
be immaterial. Finally, a table’s design is less complex if you restrict each position in the
table to a single entry; that is, you do not permit multiple entries (often called repeating
groups) in the table. These restrictions lead to the following defi nition:

APP 42 Appendix H Database Design

Client

Client
Number

Client
Name Street City State

Postal
Code Amount Paid Current Due

Recruiter
Number

AC34 Alys Clinic 134 Central Berridge CO 80330 $0.00 $17,500.00 21

BH72 Berls Hospital 415 Main Berls CO 80349 $29,200.00 $0.00 24

FD89 Ferb Dentistry 34 Crestview Berridge CO 80330 $21,000.00 $12,500.00 21

FH22 Family Health 123 Second Tarleton CO 80409 $0.00 $0.00 24

MH56 Munn Hospital 76 Dixon Mason CO 80356 $0.00 $43,025.00 24

PR11 Peel Radiology 151 Valleyview Fort Stewart CO 80336 $31,750.00 $0.00 21

RM32 Roz Medical 315 Maple Berls CO 80349 $0.00 $0.00 27

TC37 Tarleton Clinic 451 Hull Tarleton CO 80409 $18,750.00 $31,500.00 27

WL56 West Labs 785 Main Berls CO 80349 $14,000.00 $0.00 24

Recruiter

Recruiter
Number Last Name First Name Street City State

Postal
Code Rate Commission

21 Kerry Alyssa 261 Pointer Tourin CO 80416 0.10 $17,600.00

24 Reeves Camden 3135 Brill Denton CO 80412 0.10 $19,900.00

27 Fernandez Jaime 265 Maxwell Charleston CO 80380 0.09 $9,450.00

34 Lee Jan 1827 Oak Denton CO 80413 0.08 $0.00

Seminar

Seminar
Number

Seminar
Description Hours Increments

S01 Assessing Patient Satisfaction 8 2

S02 HIPAA Fundamentals 4 2

S03 Medical Powers of Attorney 12 4

S04 OSHA Fundamentals 4 2

S05 Using Basic Medical Terminology 16 4

S06 Working in Teams 16 4

S07 Coping with Crisis Situations 8 2

S08 Personal Hygiene in the Medical
Environment

2 1

Seminar Offerings

Client
Number

Seminar
Number

Total
Hours

Hours
Spent

BH72 S02 4 0

BH72 S03 12 6

FH22 S04 4 2

FH22 S07 8 4

MH56 S06 16 8

MH56 S07 8 4

PR11 S05 16 4

TC37 S01 8 2

TC37 S07 10 2

TC37 S08 2 0

Figure H–1

A relation is a two-dimensional table in which:
1. The entries in the table are single-valued; that is, each location in the table

contains a single entry.
2. Each column has a distinct name (technically called the attribute name).
3. All values in a column are values of the same attribute (that is, all entries must

correspond to the column name).
4. The order of columns is immaterial. You can view the columns in any order

you want.

A
p

p
en

d
ix

 H

5. Each row is distinct; that is, no two rows are identical.
6. The order of rows is immaterial. You can view the rows in any order you want.

A relational database is a collection of relations. Rows in a table (relation) often are
called records or tuples. Columns in a table (relation) often are called fi elds or attributes.

To depict the structure of a relational database, you can use a commonly accepted
shorthand representation: you write the name of the table and then, within parentheses,
list all of the columns in the table. Each table should begin on a new line. If the entries
in the table occupy more than one line, the entries that appear on the next line should be
indented so it is clear that they do not constitute another table. Using this method, you
would represent the JSP Recruiters database as follows:

Client (Client Number, Client Name, Street, City, State, Postal Code, Amount Paid,
Current Due, Recruiter Number)

Recruiter (Recruiter Number, Last Name, First Name, Street, City, State, Postal Code,
Rate, Commission)

Seminar (Seminar Number, Seminar Description, Hours, Increments)
Seminar Offerings (Client Number, Seminar Number, Total Hours, Hours Spent)

The JSP Recruiters database contains some duplicate column names. For example,
the Recruiter Number column appears in both the Recruiter table and the Client table.
Suppose a situation exists wherein the two columns might be confused. If you write
Recruiter Number, how would the computer or another individual know which Recruiter
Number column in which table you intended to use? When duplicate column names exist
in a database, you need to indicate the column to which you are referring. One common
approach to this problem is to write both the table name and the column name, separated
by a period. Thus, you would write the Recruiter Number column in the Client table as
Client.Recruiter Number and the Recruiter Number column in the Recruiter table as
Recruiter.Recruiter Number. Technically, when you combine a column name with a table
name, you say that you qualify the column names. It always is acceptable to qualify column
names, even if there is no possibility of confusion. If confusion may arise, however, it is
essential to qualify column names.

Functional Dependence
In the JSP Recruiters database (Figure H–1), a given client number in the database

will correspond to a single client because client numbers are unique. Thus, you could look
up a client number and fi nd a single name that corresponds to it. No ambiguity exists. If
you know a value for an attribute guarantees that you also know a single value for a second
attribute, the second attribute is said to be functionally dependent on the fi rst. Thus,
Client Name is functionally dependent on Client Number because if you know a value
for Client Number, you automatically know a single value for Client Name. In other
words, Client Number determines Client Name. This often is indicated as Client Number ’
Client Name. The attribute following the arrow is functionally dependent on the attribute
preceding the arrow.

If you were given a city and asked to fi nd a single client’s name, however, you could
not do it. Given Berridge as the city, for example, you would fi nd two client names (Alys
Clinic and Ferb Dentistry). Formally, you would say the Client Name is not functionally
dependent on City.

In the Recruiter table, Last Name is functionally dependent on Recruiter Number.
If you are given a value for Recruiter Number, for example 24, you always will fi nd a single
last name, in this case Reeves, associated with it.

Relational Databases APP 43

APP 44 Appendix H Database Design

In the Client table, Client Name is not functionally dependent on Recruiter Number.
Given Recruiter Number 21, for example, you would not be able to fi nd a single client
name, because 21 appears on more than one row in the table.

In the Seminar Offerings table, Hours Spent is not functionally dependent on Client
Number. Client Number does not give enough information. For example, in the fi rst row,
Client Number is BH72 and Hours Spent is 0. In the second row, however, the Client
Number also is BH72, but the Hours Spent is 6. Hours Spent also is not functionally
dependent on Seminar Number, because Seminar Number does not give enough information.
For example, in the fourth row, Seminar Number is S07 and Hours Spent is 4. In the ninth
row, however, Seminar Number also is S07, but Hours Spent is 2.

Hours Spent actually is functionally dependent on the combination (formally called
the concatenation) of Client Number and Seminar Number. Given a client number and a
seminar number, you can determine a single value for Hours Spent. This would be written
as Client Number, Seminar Number ’ Hours Spent.

Primary Key
The primary key of a table (relation) is the column or minimum collection of columns

that uniquely identifi es a given row in that table. In the Recruiter table, the recruiter’s
number uniquely identifi es a given row. Any recruiter number appears on only one row
of the table. Thus, Recruiter Number is the primary key. Similarly, Client Number is the
primary key of the Client table and Seminar Number is the key of the Seminar table.

The primary key of the Seminar Offerings table consists of two columns, Client
Number and Seminar Number. Total Hours and Hours Spent neither are dependent
on just Client Number nor are they dependent on just Seminar Number. Rather, they
are dependent on the combination of Client Number and Seminar Number. Thus,
neither Client Number nor Seminar Number alone can be the primary key. Both
columns are required.

The primary key provides an important way of distinguishing one row in a table
from another. In the shorthand representation, you underline the column or collection of
columns that comprise the primary key for each table in the database. Thus, the complete
shorthand representation for the JSP Recruiters database is as follows:

Client (Client Number, Client Name, Street, City, State, Postal Code, Amount Paid,
Current Due, Recruiter Number)

Recruiter (Recruiter Number, Last Name, First Name, Street, City, State, Postal
Code, Rate, Commission)

Seminar (Seminar Number, Seminar Description, Hours, Increments)
Seminar Offerings (Client Number, Seminar Number, Total Hours, Hours Spent)

Occasionally (but not often) there might be more than one possibility for the primary
key. For example, if the JSP Recruiters database included the recruiter’s Social Security
number in the Recruiter table, either the recruiter number or the Social Security number
could serve as the primary key. In this case, both columns are referred to as candidate
keys. Similarly to a primary key, a candidate key is a column or collection of columns on
which all columns in the table are functionally dependent — the defi nition for primary
key really defi nes candidate key as well. From all the candidate keys, the user chooses one
to be the primary key.

A
p

p
en

d
ix

 H

Database Design
This section presents a specifi c database design method, given a set of requirements that
the database must support. The section then presents a sample of such requirements and
illustrates the design method by designing a database to satisfy these requirements.

Design Method
The following steps illustrate how to design a database for a set of requirements.

1. Read through the requirements and identify the entities (objects) involved. Assign
names to the entities. If, for example, the design involves departments and em-
ployees, you could assign the names Department and Employee. If the design in-
volves customers, orders, and parts, you could assign the names Customer, Order,
and Part.

2. Identify a unique identifi er for each entity. For example, if one of the entities is
parts, you would determine what it takes to uniquely identify each individual
part. In other words, what enables the organization to distinguish one part from
another? For a part entity, it may be Part Number. For a customer entity, it may
be Customer Number. If there is no such unique identifi er, it probably is a good
idea to add one. Perhaps the previous system was a manual one in which customers
were not assigned numbers, in which case this would be a good time to add
customer numbers to the system. If there is no natural candidate for a primary
key, you can add an AutoNumber fi eld (like the ID fi eld that Access automatically
adds when you create a new table).

3. Identify the attributes for all the entities. These attributes will become the
columns in the tables. It is possible that more than one entity has the same
attribute. At JSP Recruiters, for example, clients and recruiters both have the
attributes of street address, city, state, and postal code. To clarify this in your
planning, you can follow the name of the attribute with the corresponding entity
in parentheses. Thus, Street (Client) would be the street address of a client,
whereas Street (Recruiter) would be the street address of a recruiter.

4. Identify the functional dependencies that exist among the attributes.
5. Use the functional dependencies to identify the tables. You do this by placing

each attribute with the attribute or minimum combination of attributes on
which it is functionally dependent. The attribute or attributes on which all other
attributes in the relation are dependent will be the primary key of a relation. The
remaining attributes will be the other columns in the relation. Once you have
determined all the columns in the relation, you can assign an appropriate name to
the relation.

6. Identify any relationships between tables by looking for matching columns.

The following sections illustrate the design process by designing the database for
JSP Recruiters. The next section gives the requirements that this database must support,
and the last section creates a database design based on those requirements.

Database Design APP 45

Physical Database
Design
Database design includes
both logical design and
physical design. Logical
database design includes
determining the fi elds
(attributes) for the various
tables (relations). With
physical database design,
you need to determine the
appropriate data type for
each fi eld. For example,
should the Client Number
fi eld be a Text fi eld or
a Number fi eld? What
format would be best for
each data type? To do so,
use the guidelines given
on pages AC 10 and 301.

B
T
W

Boolean Operators
The Boolean operators
(AND, OR, and NOT) have
a special restriction on the
expressions involved. Each
expression must be either
true or false. When using
the Boolean operator
AND, for example, the
expressions before and
after the word AND are
examined to determine
whether they are true or
false. If both are true, the
result is true. Otherwise,
the result is false. Typically,
the expressions involve
either a fi eld and a value
([Amount Paid]>20000)
or two fi elds ([Hours
Spent]<[Total Hours]).
There is one type of fi eld
that is appropriate for the
Boolean operators without
needing to be part of an
expression — the Yes/No
fi eld. For example, there
might be a Yes/No fi eld in
the Recruiter table called
Bonus that is set to Yes
(true) if the recruiter is
eligible for a bonus and
set to No (false) if the
Recruiter is not. This fi eld
could be used in a Boolean
expression by itself (Bonus
AND [Commission]>15000).
This expression would be
true if Bonus is Yes and the
value in the Commission
fi eld is greater than
15,000. It would be false
otherwise. For details on
determining when to use
a Yes/No fi eld, see the Plan
Ahead on page AC 301.

B
T
W

APP 46 Appendix H Database Design

Requirements for the JSP Recruiters Database
The JSP Recruiters database must support the following requirements:

1. For a client, JSP needs to maintain the client number, name, street address, city,
state, postal code, amount paid, and the amount that currently is due. They also need
the total amount, which is the sum of the amount already paid and the current due.

2. For a recruiter, store the recruiter number, last name, fi rst name, street address,
city, state, postal code, rate, and commission.

3. For a seminar, store the seminar number, seminar description, hours, and
increments. In addition, for each offering of the seminar, store the number of the
client for whom the seminar is offered, the total number of hours planned for the
offering of the seminar, and the number of hours already spent. The total hours
may be the same as the normal number of hours for the seminar, but it need not
be. This gives JSP the fl exibility of tailoring the offering of the seminar to the
specifi c needs of the client.

4. Each client has a single recruiter to which the client is assigned. Each recruiter
may be assigned many clients.

5. A client may be offered many seminars and a seminar may be offered to many clients.

Database Design Example
The following represents the application of the design method for the JSP Recruiters

requirements.
1. There are three entities: clients, recruiters, and seminars. The names assigned to

them are Client, Recruiter, and Seminar, respectively.
2. The unique identifi er for clients is the client number. The unique identifi er

for recruiters is the recruiter number. The unique identifi er for seminars is the
seminar number. The names assigned to these identifi ers are Client Number,
Recruiter Number, and Seminar Number, respectively.

3. The attributes are:
 Client Number
 Client Name
 Street (Client)
 City (Client)
 State (Client)
 Postal Code (Client)
 Amount Paid
 Current Due
 Recruiter Number
 Last Name
 First Name
 Street (Recruiter)
 City (Recruiter)
 State (Recruiter)
 Postal Code (Recruiter)
 Rate
 Commission
 Seminar Number

A
p

p
en

d
ix

 H

 Seminar Description
 Hours
 Increments
 Total Hours
 Hours Spent
 Remember that parentheses after an attribute indicate the entity to which the

attribute corresponds. Thus, Street (Client) represents the street address of a
client in a way that distinguishes it from Street (Recruiter), which represents the
street address of a recruiter.

 Question: Why isn’t Total Amount included?
Answer: Total Amount, which is Amount Paid plus Current Due, can be calculated

from other columns. You can perform this calculation in queries, forms, and reports.
Thus, there is no need to include it as a column in the Client table. Further, by including
it, you introduce the possibility of errors in the database. For example, if Amount Paid is
$5,000, Current Due is $2,000, and yet you set Total Amount equal to $8,000, you have
an error. You also need to be sure to change Total Amount appropriately whenever you
change either Amount Paid or Current Due. If Total Amount is not stored, but rather is
calculated when needed, you avoid all these problems.

4. The functional dependencies among the attributes are:

 Client Number ’ Client Name, Street (Client), City (Client), State (Client),
 Postal Code (Client), Amount Paid, Current Due, Recruiter Number

 Recruiter Number ’ Last Name, First Name, Street (Recruiter), City (Recruiter),
 State (Recruiter), Postal Code (Recruiter), Rate, Commission

 Seminar Number ’ Seminar Description, Hours, Increments
 Client Number, Seminar Number ’ Total Hours, Hours Spent

Question: Why is Total Hours listed with Client Number and Seminar Number
rather than just with Seminar Number?

Answer: If the Total Hours was required to be the same as the number of hours
for the seminar, then it indeed would be listed with Seminar Number. (It would not vary
from one client to another.) Because JSP wants the fl exibility of tailoring the number of
hours for which a particular seminar is offered to the specifi c needs of the client, Total
Hours also is dependent on Client Number.

The client’s name, street address, city, state, postal code, amount paid, and current
due are dependent only on Client Number. Because a client has a single recruiter, the
recruiter number is dependent on Client Number as well. The recruiter’s last name, fi rst
name, street address, city, state, postal code, rate, and commission are dependent only on
Recruiter Number. A seminar description, the number of hours for the seminar, and the
increments in which the seminar is offered are dependent only on Seminar Number. The
total hours for a particular seminar offering as well as the hours already spent are dependent
on the combination of Client Number and Seminar Number.

Database Design APP 47

APP 48 Appendix H Database Design

5. The tables are:
 Client (Client Number, Client Name, Street, City, State, Postal Code, Amount Paid,

 Current Due, Recruiter Number)
 Recruiter (Recruiter Number, Last Name, First Name, Street, City, State, Postal Code,

 Rate, Commission)
 Seminar (Seminar Number, Seminar Description, Hours, Increments)
 Seminar Offerings (Client Number, Seminar Number, Total Hours, Hours Spent)
 The primary keys are underlined.

6. The following are the relationships between the tables:

 a. The Client and Recruiter tables are related using the Recruiter Number fi elds.
 b. The Client and Seminar Offerings tables are related using the Client Number fi elds.
 c. The Seminar and Seminar Offerings tables are related using the Seminar

Number fi elds.
Question: Is there a relationship between the Client table and the Seminar table?

If so, what type of relationship is it?
Answer: There actually is a many-to-many relationship between the Client table and

the Seminar table. A client can schedule many seminars and a seminar can be offered to many
clients. The typical way a many-to-many relationship between two tables is implemented is
by creating a third table whose primary key is the combination of the primary keys of the
individual tables. In this case, the Seminar Offerings table plays exactly that role.

Normalization
After you create your database design, you should analyze it to make sure the design is free
of potential problems. To do so, you use a process called normalization. The normalization
process enables you to identify the existence of potential problems. This process also supplies
methods for correcting these problems.

The normalization process involves converting tables into various types of normal
forms. A table in a particular normal form possesses a certain desirable set of properties.
Several normal forms exist, the most common being fi rst normal form (1NF), second
normal form (2NF), and third normal form (3NF). The forms create a progression in
which a table that is in 1NF is better than a table that is not in 1NF; a table that is in 2NF
is better than one that is in 1NF; and so on. The goal of normalization is to take a table
or collection of tables and produce a new collection of tables that represents the same
information but is free of problems.

First Normal Form
A relation (table) that contains a repeating group (or multiple entries for a single

row) is called an unnormalized relation. Removal of repeating groups is the starting
point in the goal for tables that are as free of problems as possible. In fact, in most database
management systems, tables cannot contain repeating groups. A table (relation) is in fi rst
normal form (1NF) if it does not contain repeating groups.

In designing a database, you may have created a table with a repeating group. For
example, you might have created a Seminar Offerings table, in which the primary key is the
Client Number and there is a repeating group consisting of Seminar Number, Total Hours,
and Hours Spent. In the example, there is one row per client with Seminar Number, Total
Hours, and Hours Spent repeated as many times as necessary (Figure H–2).

A
p

p
en

d
ix

 H

In the shorthand notation, you represent a repeating group by enclosing the
repeating group within parentheses. The Seminar Offerings table in Figure H–2 would
be represented as:

Seminar Offerings (Client Number, (Seminar Number, Total Hours, Hours Spent))

Conversion to First Normal Form
To convert the table to 1NF, remove the repeating group symbol to give the following:
Seminar Offerings (Client Number, Seminar Number, Total Hours, Hours Spent)
The corresponding example of the new table is shown in Figure H–3.

Normalization APP 49

Seminar Offerings

Client
Number

Seminar
Number

Total
Hours

Hours
Spent

BH72 S02
S03

4
12

0
6

FH22 S04
S07

4
8

2
4

MH56 S06
S07

16
 8

8
4

PR11 S05 16 4

TC37 S01
S07
S08

8
10
 2

2
2
0

Figure H–2

Seminar Offerings

Client
Number

Seminar
Number

Total
Hours

Hours
Spent

BH72 S02 4 0

BH72 S03 12 6

FH22 S04 4 2

FH22 S07 8 4

MH56 S06 16 8

MH56 S07 8 4

PR11 S05 16 4

TC37 S01 8 2

TC37 S07 10 2

TC37 S08 2 0

Figure H–3

APP 50 Appendix H Database Design

Note that the fi rst row of the unnormalized table (Figure H–2 on the previous page)
indicates that client BH72 currently is being offered both seminar S02 and seminar S03.
In the normalized table, this information is represented by two rows, the fi rst and the
second (Figure H–3 on the previous page). The primary key for the unnormalized Seminar
Offerings table was the Client Number only. The primary key for the normalized table now
is the combination of Client Number and Seminar Number.

In general, when converting a non-1NF table to 1NF, the primary key typically will
include the original primary key concatenated with the key of the repeating group; that is,
the column that distinguishes one occurrence of the repeating group from another within
a given row in the table. In this case, Seminar Number is the key to the repeating group
and thus becomes part of the primary key of the 1NF table.

Second Normal Form
Even though the following table is in 1NF, problems may exist that will cause

you to want to restructure the table. You might have created the following Seminar
Offerings table:

Seminar Offerings (Client Number, Client Name, Seminar Number, Seminar
Description, Total Hours, Hours Spent)

with the functional dependencies:
Client Number ’ Client Name
Seminar Number ’ Seminar Description
Client Number, Seminar Number ’ Total Hours, Hours Spent

This notation indicates that Client Number alone determines Client Name, Seminar
Number alone determines Seminar Description, but it requires both a Client Number and
a Seminar Number to determine either Total Hours or Hours Spent. Consider the sample
of this table shown in Figure H–4.

Seminar

Client
Number

Client
Name

Seminar
Number

Seminar
Description

Total
Hours

Hours
Spent

BH72 Berls Hospital S02 HIPAA Fundamentals 4 0

BH72 Berls Hospital S03 Medical Powers of Attorney 12 6

FH22 Family Health S04 OSHA Fundamentals 4 2

FH22 Family Health S07 Coping with Crisis Situations 8 4

MH56 Munn Hospital S06 Working in Teams 16 8

MH56 Munn Hospital S07 Coping with Crisis Situations 8 4

PR11 Peel Radiology S05 Using Basic Medical Terminology 16 4

TC37 Tarleton Clinic S01 Assessing Patient Satisfaction 8 2

TC37 Tarleton Clinic S07 Coping with Crisis Situations 10 2

TC37 Tarleton Clinic S08 Personal Hygiene in the Medical
Environment

2 0

Figure H–4

A
p

p
en

d
ix

 H

The name of a specifi c client, BH72 for example, occurs multiple times in the table.
This redundancy causes several problems. It certainly is wasteful of space, but that is not
nearly as serious as some of the other problems. These other problems are called update
anomalies and they fall into four categories:

1. Update. A change to the name of client BH72 requires not one change to the
table, but several — you must change each row in which BH72 appears. This
certainly makes the update process much more cumbersome; it is more
complicated logically and takes longer to update.

2. Inconsistent data. There is nothing about the design that would prohibit client
BH72 from having two or more different names in the database. The fi rst row,
for example, might have Berls Hospital as the name, whereas the second row
might have Berl Hospital.

3. Additions. There is a real problem when you try to add a new seminar and its
description to the database. Because the primary key for the table consists of both
Client Number and Seminar Number, you need values for both of these to add a
new row. If you have a client to add but there are as yet no seminars scheduled for
it, what do you use for a seminar number? The only solution would be to make
up a dummy seminar number and then replace it with a real seminar number
once the client requests a seminar. This is not an acceptable solution.

4. Deletions. In Figure H–4, if you delete client BH72 from the database, you also
lose all the information about seminar S02. For example, you would no longer
know that the description of seminar S02 is HIPAA Fundamentals.

These problems occur because there is a column, Client Name, that is dependent
on only a portion of the primary key, Client Number, and not on the complete primary
key. The problem with Seminar Description is that it is dependent on only the Seminar
Number. This leads to the defi nition of second normal form. Second normal form represents
an improvement over fi rst normal form because it eliminates update anomalies in these
situations. In order to understand second normal form, you need to understand the term
nonkey column.

A column is a nonkey column (also called a nonkey attribute) if it is not a part of
the primary key. A table (relation) is in second normal form (2NF) if it is in fi rst normal
form and no nonkey column is dependent on only a portion of the primary key.

Note that if the primary key of a table contains only a single column, the table
automatically is in second normal form. In that case, there could not be any column
dependent on only a portion of the primary key.

Conversion to Second Normal Form
To correct the problems, convert the table to a collection of tables in second normal

form. Then name the new tables. The following is a method for performing this conversion.
First, take each subset of the set of columns that make up the primary key, and

begin a new table with this subset as its primary key. For the Seminar Offerings table, this
would give:

(Client Number)
(Seminar Number)
(Client Number, Seminar Number)

Normalization APP 51

APP 52 Appendix H Database Design

Next, place each of the other columns with the appropriate primary key; that is,
place each one with the minimal collection of columns on which it depends. For the
Seminar Offerings table, this would yield:

(Client Number, Client Name)
(Seminar Number, Seminar Description)
(Client Number, Seminar Number, Total Hours, Hours Spent)

Each of these new tables now can be given a name that is descriptive of the meaning
of the table, such as Client, Seminar, and Seminar Offerings. Figure H–5 shows samples
of the tables involved.

Client

Client
Number

Client
Name

BH72 Berls Hospital

FH22 Family Health

MH56 Munn Hospital

PR11 Peel Radiology

TC37 Tarleton Clinic

Figure H–5

Seminar

Seminar
Number

Seminar
Description

S01 Assessing Patient Satisfaction

S02 HIPAA Fundamentals

S03 Medical Powers of Attorney

S04 OSHA Fundamentals

S05 Using Basic Medical Terminology

S06 Working in Teams

S07 Coping with Crisis Situations

S08 Personal Hygiene in the Medical Environment

Seminar Offerings

Client
Number

Seminar
Number

Total
Hours

Hours
Spent

BH72 S02 4 0

BH72 S03 12 6

FH22 S04 4 2

FH22 S07 8 4

MH56 S06 16 8

MH56 S07 8 4

PR11 S05 16 4

TC37 S01 8 2

TC37 S07 10 2

TC37 S08 2 0

The new design eliminates the update anomalies. A client name occurs only once
for each client, so you do not have the redundancy that you did in the earlier design.
Changing the name of a client now is a simple process involving a single change. Because
the name of a client occurs in a single place, it is not possible to have multiple names for
the same client in the database at the same time.

To add a new client, you create a new row in the Client table and thus there is no need
to have a seminar offering already scheduled for that client. Also, deleting client BH72 has
nothing to do with the Seminar table and, consequently, does not cause seminar S02 to be
deleted. Thus, you still have its description (HIPAA Fundamentals) in the database. Finally,
you have not lost any information in the process. The data in the original design can be
reconstructed from the data in the new design.

A
p

p
en

d
ix

 H

Third Normal Form
Problems still can exist with tables that are in 2NF as illustrated in the following

Client table:
Client (Client Number, Client Name, Street, City, State, Postal Code,

Amount Paid, Current Due, Recruiter Number, Last Name, First Name)

The functional dependencies in this table are:
Client Number ’ Client Name, Street, City, State, Postal Code, Amount Paid,

Current Due, Recruiter Number

Recruiter Number ’ Last Name, First Name
Client Number determines all the other columns. In addition, Recruiter Number

determines Last Name and First Name.
Because the primary key of the table is a single column, the table automatically is

in second normal form. As the sample of the table shown in Figure H–6 demonstrates,
however, this table has problems similar to those encountered earlier, even though it is
in 2NF. In this case, it is the last name and fi rst name of a recruiter that can occur many
times in the table (see recruiter 21, Alyssa Kerry, for example).

Normalization APP 53

Client

Client
Number

Client
Name ...

Amount
Paid

Current
Due

Recruiter
Number

Last
Name

First
Name

AC34 Alys Clinic ... $0.00 $17,500.00 21 Kerry Alyssa

BH72 Berls Hospital ... $29,200.00 $0.00 24 Reeves Camden

FD89 Ferb Dentistry ... $21,000.00 $12,500.00 21 Kerry Alyssa

FH22 Family Health ... $0.00 $0.00 24 Reeves Camden

MH56 Munn Hospital ... $0.00 $43,025.00 24 Reeves Camden

PR11 Peel Radiology ... $31,750.00 $0.00 21 Kerry Alyssa

RM32 Roz Medical ... $0.00 $0.00 27 Fernandez Jaime

TC37 Tarleton Clinic ... $18,750.00 $31,500.00 27 Fernandez Jaime

WL56 West Labs ... $14,000.00 $0.00 24 Reeves Camden

Figure H–6

This redundancy results in the same set of problems described previously with the
Seminar Offerings table. In addition to the problem of wasted space, you have similar
update anomalies, as follows:

1. Updates. A change to the name of a recruiter requires not one change to the table,
but several. Again the update process becomes very cumbersome.

2. Inconsistent data. There is nothing about the design that would prohibit a recruiter
from having two different names in the database. On the fi rst row, for example, the
name for recruiter 21 might read Alyssa Kerry; whereas on the third row (another
row on which the recruiter number is 21), the name might be Stacy Webb.

3NF
The actual defi nition of
third normal form is that
no nonkey column is
functionally dependent
on any other nonkey
column. The relation in
Figure H-6 also violates
this defi nition because
the nonkey column Last
Name is functionally
dependent on the
nonkey column Recruiter
Number.

B
T
W

APP 54 Appendix H Database Design

3. Additions. In order to add recruiter 39, whose name is Tati Angelo, to the database,
she must have at least one client. If she has not yet been assigned any clients, either
you cannot record the fact that her name is Tati Angelo or you have to create a fi cti-
tious client for her to represent. Again, this is not a desirable solution to the problem.

4. Deletions. If you were to delete all the clients of recruiter 24 from the database,
then you also would lose all information concerning recruiter 24.

These update anomalies are due to the fact that Recruiter Number determines Last
Name and First Name, but Recruiter Number is not the primary key. As a result, the same
Recruiter Number and consequently the same Last Name and First Name can appear on
many different rows.

You have seen that 2NF is an improvement over 1NF, but to eliminate 2NF
problems, you need an even better strategy for creating tables in the database. Third
normal form provides that strategy. Before looking at third normal form, however, you
need to become familiar with the special name that is given to any column that determines
another column (like Recruiter Number in the Client table).

Any column (or collection of columns) that determines another column is called a
determinant. Certainly the primary key in a table is a determinant. In fact, by defi nition,
any candidate key is a determinant. (Remember that a candidate key is a column or collec-
tion of columns that could function as the primary key.) In this case, Recruiter Number is
a determinant, but it certainly is not a candidate key, and that is the problem.

A table is in third normal form (3NF) if it is in second normal form and if the only
determinants it contains are candidate keys. This defi nition is not the original defi nition
of third normal form. This more recent defi nition, which is preferable to the original, also
is referred to as Boyce-Codd normal form (BCNF). However, in this text, it simply is
referred to as third normal form.

Conversion to Third Normal Form
You now have identifi ed the problem with the Client table: it is not in 3NF. You

now need a scheme to correct the defi ciency in the Client table and in all tables having
similar defi ciencies. Such a method follows.

First, for each determinant that is not a candidate key, remove from the table the
columns that depend on this determinant, but do not remove the determinant. Next,
create a new table containing all the columns from the original table that depend on this
determinant. Finally, make the determinant the primary key of this new table.

In the Client table, for example, Last Name and First Name are removed because
they depend on the determinant Recruiter Number, which is not a candidate key. A new
table is formed, consisting of Recruiter Number as the primary key, Last Name and First
Name. Specifi cally:

Client (Client Number, Client Name, Street, City, State, Postal Code,
Amount Paid, Current Due, Recruiter Number, Last Name, First Name)

is replaced by:
Client (Client Number, Client Name, Street, City, State, Postal Code,

Amount Paid, Current Due, Recruiter Number)

and
Recruiter (Recruiter Number, Last Name, First Name)

Figure H–7 shows samples of the tables involved.

A
p

p
en

d
ix

 H

This design corrects the previously identifi ed problems. A recruiter’s name appears
only once, thus avoiding redundancy and making the process of changing a recruiter’s
name a very simple one. It is not possible with this design for the same recruiter to have
two different names in the database. To add a new recruiter to the database, you add a row
in the Recruiter table so it is not necessary to have a pre-existing client for the recruiter.
Finally, deleting all the clients of a given recruiter will not remove the recruiter’s record
from the Recruiter table, so you retain the recruiter’s name; all the data in the original
table can be reconstructed from the data in the new collection of tables. All previously
mentioned problems indeed have been solved.

Client

Client
Number

Client
Name ... Amount Paid Current Due

Recruiter
Number

AC34 Alys Clinic ... $0.00 $17,500.00 21

BH72 Berls Hospital ... $29,200.00 $0.00 24

FD89 Ferb Dentistry ... $21,000.00 $12,500.00 21

FH22 Family Health ... $0.00 $0.00 24

MH56 Munn Hospital ... $0.00 $43,025.00 24

PR11 Peel Radiology ... $31,750.00 $0.00 21

RM32 Roz Medical ... $0.00 $0.00 27

TC37 Tarleton Clinic ... $18,750.00 $31,500.00 27

WL56 West Labs ... $14,000.00 $0.00 24

Figure H–7

Recruiter

Recruiter
Number

Last
Name

First
Name

21 Kerry Alyssa

24 Reeves Camden

27 Fernandez Jaime

Normalization APP 55

S
T
U

D
E

N
T

A
S

S
IG

N
M

E
N

T
S

APP 56 Appendix H Database Design

In the Lab

Design, create, modify, and/or use a database following the guidelines, concepts, and skills
presented in this appendix.

Lab 1: Designing a Database
Instructions: Answer the following questions in the format specifi ed by your instructor.
 1. List three relational table characteristics that are violated in the table shown in Figure H–8.

Orders

Date
Part
Number

Number
Ordered Date

11/01/2008 AX12 11 11/12/2008

11/01/2008 BT04
BZ66

1
1

11/09/2008
Friday

11/03/2008 CB03 4 11/13/2008

11/03/2008 CX11 2 11/12/2008

11/04/2008 AZ52
BA74

2
4

11/12/2008
$182.91

11/04/2008 BT04 1 11/15/2008

11/03/2008 CX11 2 11/12/2008

11/04/2008 CZ81 2 11/13/2008

Figure H–8

 2. The following table is a student’s fi rst attempt to create a database design:

 Student (StudentID, Student Name, Credit Hours, AdvisorID, Advisor Name, (CourseID, Course
 Name, Grade))

 a. Identify the functional dependencies.

 b. Convert this table to an equivalent collection of tables in 3NF.

 3. The following table concerns invoice information. For a given invoice (identifi ed by invoice
number), there will be a single customer. The customer’s number, name, and address appear on
the invoice as well as the invoice date. Also, there may be several different items appearing on the
invoice. For every item that appears, the item number, description, price, and number shipped will
be displayed. Convert this table into an equivalent collection of tables in 3NF.

 Invoice (Invoice Number, Customer Number, Customer Name,

 Street Address, City, State, Postal Code, Country, Invoice Date, (Item Number,

 Item Description, Price, Number Shipped))

 4. Consider the following set of requirements for Sun City Limo:

 For each driver, the company keeps track of the driver’s name, driver’s license number, home
telephone number, and cell telephone number.

 For each limo, the company keeps track of a unique limousine ID number, limousine color, and
number of passengers the limo can hold.

 One driver can be assigned to more than one limo.
Based on these requirements, create a set of 3NF relations.

